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EVALUATION OF SMALL TAIL PROBABILITIES
DIRECTLY FROM THE CHARACTERISTIC FUNCTION

INTRODUCTION

Given the characteristic function (CF) f(&) of a random
variable x, the corresponding probability density function (PDF)

p(u) can be found analytically by the Fourier transform

p(u) = 5= J dE exp(-iu&) £(E) . (1)

The CF f(§) exists for ail real ¥ because the area under
nonnegative PDF p(u) is unity. However, when integral (1) cannot
be accomplished in closed form, it is often necessary to resort
to a numerical technique, namely, the fast Fourier transform

(FFT) to obtain approximate values of PDF p(u).

Similarly, the exceedance diétribution function (EDF),
: «©
E(u) = Prob(x > u) = [ dt p(t), corresponding to CF f(§), is
u
available by the Fourier transform (reference 1, equation (4.14)

or reference 2, page 3)

E(u) = % Im(f(a) exp(-iua)) : (2)

8]

+
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If this latter integral (2) cannot be done in closed form, or if

the indefinite integral of PDF p(u) is unavailable, an efficient




numerical technique employing the FFT can again be utilized

(references 2 through 4).

However, there is an inherent limitation in the numerical
approximations to integrals (1) and (2) in their current forms,
as integrals along the real §-axis. Both require sampling and
summing integrands with values in the neighborhood of unity and
relying on the cancellation of complex plus—and-minus values
(contributed by the oscillating exponential exp(-iu§)) to reach
very small values on the tails of the PDF p(u) or EDF E(u) for
large u. If the computer being used is limited to D significant
decimal digits, then the small tail probabilities calculated for

D

p(u) or E(u), which are less than approximately 10 ~, are useless

because these values are buried in the inherent round-off noise.

In this report, an efficient technique for obtaining small
tail probabilities, significantly less than lO—D, is presented
for both the PDF p(u) and the EDF E(u). The basic idea is to
move the contour of integration into the complex &-plane;
however, care must then be taken to control the aliasing that
always accompanies equispaced sampling, which in turn, is
required for efficient use of an FFT. Examples of the proposed
technique are presented for both the PDF and the EDF. Values of

50

small tail probabilities in the 10~ range are readily achieved

using a computer with D = 15 significant decimal digits.



DEVELOPMENT OF TECHNIQUE FOR PDF
MOVEMENT OF CONTOUR FOR PDF

The CF £(&) follows from the PDF p(u) according to the

inverse Fourier transform

£(E) = j du exp(ifu) p(u)

-0

0 ©
= [ au exptigu) p(u) + [ du exp(igw) p(u) = £_(8) + £,(8) . (3)
— 0

The component £ (&), corresponding to u < 0, is analytic for
Ei < 0 because exp(—{iu) is bounded for u < 0. The decay of p(u)

as u » -« is arbitrary.

It is presumed that the PDF p(u) has already been shifted on
the u—-axis so that it is virtually zero for u < 0, yet is packed
as closely as possible to the origin at abscissa values near
u = 0+. This condition can be accomplished by adding a real
constant ¢ to the random variable under investigation. Addition
of a constant ¢ corresponds to multiplication of the
correqunding CF by the factor exp(icf); this factor is presumed
to be present in the given CF £(&). The constant ¢ can be
positive or negative, depending on the desired direction of éhift

of a given PDF, so as to make p(u) essentially nonzero only in

the positive neighborhood of u = 0.




This section focuses on the positive tail of PDF p(u). It is
presumed that p(u) decays according to u® exp(-Bu) as u - +,

B > 0. Then, the locations En =a_ - i bn of all singularities

n
of f+(£) must satisfy bn > 0 for all n. Let bl = min{bn},
without loss of generality. Then, p(u) exp(ru) decays
eiponentially as u = +5, provided that real constant r < bl'
Accordingly, the Fourier relation in equation (1) can be written
as |
o—ir
P(u) = 57 | d& exp(-iuf) £(8) , 0 <r < b . (4)

—o—ir

This path of integration passes through the horizontal strip of
analyticity between the real ¥-axis and the highest singularity

of £(&) in the lower-half &-plane.

Fér exaﬁple, PDF p(u) = 1.5 exp(-u) - exp(-2u), for u > 0
has CF £(&) = 1.5/(1-iE) — 1/(2-1E), with poles at & = —i and
§{ = -i2. Thus, a; = 0, bl =1, a, = 0, b2 =2, and r < 1. As a
second example, p(u) = u exp(-u), for u > 0 has £f(§) = 1/(l—iE,)2
with a; = 0, bl = 1; for which r < 1. Finally, Gaussian PDF
p(u) = (2n)7% exp(-(u-c)?/2] has CF £(&) = exp(-£2/2 + icf),
which has no singularities anywhere in the finite &-plane. Then,
r can be chosen arbitrarily, positive or negative. (Positive
constant ¢ is taken as small as possible, subject to PDF value

p(0) being sufficiently small, as discussed earlier.)



Upon making the substitution x = £ + ir in equation (4),

it follows that

p(u) = exp(-ru) p(u) , (5)

where auxiliary function

p(u) = 5% dx exp(-iux) f(x - ir) . (6)

g ™0 8

The.real function p(u) is nonnegative for all u, but it may not
have unit area. The relations in equations (5) and (6) are
exact, even if the path of integration is very close to the
highest singularity of f£(x - ir) in the lower-half x-plane at

Xy = a; - i(b1 - r).

By writing equation (5) in the form p(u) = p(u) exp(ru), it
is seen that the closer r is taken to bl,vthe less decay there is
in p(u) for positive u. This property makes p(u) a wider
function of u and brings some of the originally very small values
of p(u) up to moderate levels; of course, the exponential decay
of p(u) will eventually take over, but it will be shifted to
larger u values before becoming dominant. Thus, larger values of
r (nearer bl) enable investigatidn of deeper tails of p(u) than
possible when r = 0, namely, using the real f-axis in equation

(4).

Because PDF p(u) = 0 for u < 0, the same is true for p(u),

according to equation (5). Also, the essential nonzero region of




p(u) is in the positive neighborhood of u = 0.

(If the negative tail of random variable x is of interest,
consider the variable y = T - x, for which the PDF is
p., (u) = px(T - u). Real constant T is taken just large enough
that y is.essentially nonzero only in the positive neighborhood
of zero. Then, the CF of interest is fy(E) = exp(i&T) fx(—E)

instead of fx(ﬁ).)

SAMPLING AND ALIASING FOR PDF

Fourier relation (6) for widened function p(u) is evaluated

approximately by sampling at increment Ax for all x. (Truncation
errors are discussed below.) The result is
Ax d .
plu) = ﬂmgo exp(-iuma ) f(mb_ - ir) = P(u) for all u . (7)

The latter real function, P(u), is periodic in u, with period

2n/Ax. In fact, it is the aliased version of p(u):

B(u) =5 . E(u - m %EJ for all u . (8)
m=-o X
For P(u) to be a good approximation to p(u) in the positive
neighborhood of u = 0, the aliasing lobes of P(u) must be
sufficiently separated so that the fundamental period, interval

(O,Zn/AX), is only slightly contaminated by the undesired lobes



contributed when m = +1, +2,.... (Recall that p(u) is
essentially nonzero only in the positive neighborhood of u = 0.)
This requirement can be checked by looking at one period of P(u),
namely, 0 < u < Zn/Ax, to determine if the skirts near u = 0+ and
u = 2n/b - are sufficiently small. If not, sampling increment

Ax must be decreased. Then, P(u) will be a good approximation

to p(u) in the interval (O,ZE/AX).

1t should be recalled that the closer r is taken to b the

ll
less decay there is in p(u) (see equation (5)); that is, p(u) is

wider in u, leading to more severe aliasing problems in eguation

(8), unless Ax is additionally decreased, separating the lobes of
p(u) farther apart. This additional decrease is an unavoidable

consequence of investigating deeper tails of p(u) by relations

(5) and (6).

The proximity of the path of integration in equation (6)
to the nearest singularity of f(x - ir) does not require an
additional decrease in sampling increment 4_; it is all accounted
for in the widening effect of exp(ru) upon p(u) in the function
p(u) = exp(ru) p(u) and the attendant more stringent alias-

suppression requirement in equation (8).

A shortcut for the evaluation of equation (7) is available
by taking advantage of the conjugate symmetry of f(x - ir).
In particular, from equation (3), it follows that £(- x - ir) =

f*(x - ir). Then, equation (6) can be expressed as




dx exp(-iux) £(x — ir) , (9)

fo}
g
]
Al
%
ot— 8

and equation (7) can be expressed as

by
p{u) = — Re

s

; €n exp(—iumAx) f(mAx - ir) = p(u) . (10)

3
]

This function is the same function P(u) encountered in equation

(7). The sequence {sm} is ¥ for m = 0, and 1 otherwise.

FFT CONSIDERATIONS FOR PDF

Periodic function P(u), defined by equation (7), needs to be
evaluated over one period only. 1In particular, because the
function of interest, p(u), is essentially nonzero only in the
positive neighborhood of u = 0, attention is confined to values

©

A‘.

ﬁ[%ﬁ %) = 5% 7 exp(-i2mmn/N) £(ms, - ir) for 0 < n < N-1. (11)
X m=- ,

However, because the exponential factor exp(-i2nmn/N) treats all

complex samples f({m + kN}Ax - ir) equally, regardless of the

value of integer k, these samples can be collapsed (or

prealiased) into a set of just N values according to

E o=y £((m+ kwp, - ir) for 0 ¢m < N-1 . | (12)

k=-o -




This process accounts for all the samples of f encountered in
equation (11). FFT size N can be much smaller than the number of
terms required in equation (12) to control and minimize
truncation errors. Then, equation (11) can be written exactly as

finite sum
~ X . ~
p(— -] - = exp(-i2mma/N) E_ for 0 < n < N-1 . (13)

Because the N infinite sums required by equation (12) can
never_be conducted in practice, it is necessary to truncate them
where |f(x - ir)| is sufficiently small. The effect of the
resultant truncation errors can be observed in the u domain as a
low-level oscillatory behavior when equation (13) is plotted. If
this level is excessive, a smaller tolerance must be set on
truncating equation (12), and additional values for larger |k |

must be taken into account}

Operation‘(l3) can be accurately and efficiently realized as
an N-point FFT if N is taken as a power of 2. Observe that FFT
size N does not affect the truncation error or the aliasing
error; rathér, N merely sets the spacing in variable u in

equation (13), namely,

at which output P(u) is obtained.




PLOTTING PROCEDURE

It is recommended that output (13) be plotted over the full
sweep of n values and observed for its near-origin behavior,
aliasing, and truncation errors. Then, additive constant c, or
Sampling increment Ax, or the truncation limits in equation (12),
or any combination of the three can be modified, and the entire
procedure repeated until all errors are acceptable. Also,
regions of u where P(u) is below the inherent round-off error of
the computer will appear with a white-noise strip of low-level
values; this white-noise strip gives a measure of the relative
errors of the values obtained for P(u) in the entire region

0 < u < 2n/Ax.

If the following points in the fundamental interval are

defined according to
for 0 < n £ N-1, (15)

then, the desired values of pdf p(u) are available from equations

(5), (7), and (13) according to

p(un) = exp(—run) E(un) = exp(—run) ﬁ(un)
: 6, N-1 B
= exp(-ru ) 5 %;% exp(-i2nmn/N) £ for 0 < n < N-1 . (16)

A plot of this approximation to p(u), in conjunction with the

relative error information obtained from the earlier plot of § in

10



equation (13), reveals the levels of PDF p(u) and the relative
errors associated with different regions of u. If the lowest
levels reached by equation (16) are not sufficiently small,
'parameter r in equations (4) and (12) must be increased and the
plots of equations (13) and (16) must be repeated. As noted
eariier, doing so will likely entail a decrease in sampling
increment 4  to control aliasing of a wider p(u). A short

trial-and-error procedure may be required.

11/(12 blank)




DEVELOPMENT OF TECHNIQUE FOR EDF
MOVEMENT OF CONTOUR FOR EDF

The Fourier transform relating the EDF E(u) = Prob(x > u) to

the CF f(!() can be written in the form
Bw = [ at p(t) = g3 [ a8 H exp(-iub) (17)
u : C

where contour C is the real &-axis, except that it passes below
the singularity at & = 0. The comments regarding the
corresponding PDF p(u) in equation (3) and sequel are directly
relevant to equation (17). 1In particular, as in equation (4),
the contour is moved to distance r below the real &-axis, where
real constant r is less than the distance to the nearest

singularity of £(&) in the lower-half &-plane to obtain

o—ir
B(u) = 37 | 48 S exp(-iug) = exp(-ru) E(u) (18)
—o-jr

where auxiliary function

_ 1 f(x - ir) s
E(u) = 57 J dx = ir exp(-iux) . . (19)
Here, the substitution x = § + ir was used. Relation (19) is

still a Fourier transform, although with a modified integrand.

13




The real function E(u) is nonnegative for all u. Relations
(18) and (19) are exact, even if the path of integration is very
close to the highest singularity of f(x - ir) in the lower-half

x-plane at Xy = a; - i(bl -r), bl >.0.

By writing equation (18) in the form E(u) = E(u) exp(ru), it
is seen that the closer r is taken to bl’ the less decayAtheré is
in E(u) for positive u. For u > 0, E(u) becomes a wider function
of u and bfings some of the originally very small values of E(u)
up to moderate levels; of course, the exponential decay of E(u)
as u - +» eventually takes over, but‘it is shifted to larger u
values before becoming dominant. Thus, larger values of r
{nearer bl) enable investigation of deeper tails of E(u) than

possible when r = 0, namely, using the real &-axis in equation

(17).

The dominant asymptotic behaviors of functions E(u) and E(u)

are as follows:

l1 as u » -= exp(ru) as u = -«

E(u) = , E(u) « .
exp(—blu) as u > 4+ exp(ru—blu) as u > +«

(20)

By taking 0 < r < bl’ E(u) decays to zero for both u - #=.
Taking r close to b; keeps E(u) at a high level (near E(0)) for
an extended range of positive u. It also gives maximum decay to
the left tail of E(u), which will be seen to be advantageous in

terms of alias control. 1If E(u) can be accurately calculated for

14



large positive u, then relation (18) will result in accurate

evaluation of E(u) at very low levels of probability.

It is important to observe that, unlike the original EDF
E(u), the modified EDF E(u) decays to zero as u - #«; the
original EDF E(u) always approaches 1 as u » -». This feature of
E(u) allows the integral of equation (19) to be approximated by a

sampling procedure and yet have controllable aliasing lobes.

SAMPLING AND ALIASING FOR EDF

Fourier relation (19) for modified EDF E(u) is evaluated
approximately by sampling at increment AX for all x. The result
is

©
E(u) = % Re I dx EL%—E—%EL exp(-iux) =
0

o, > £(ma, - ir) )
= — Re %;% & T Tna, exp(-iums ) = E(u) for all u . (21)

The latter real function, E(u), is periodic in u, with period

2n/Ax; in fact, it is the aliased version of E(u):

©

E(u) =) | E(u - m %ﬂ) for all u . (22)
m=—e x :

For E(u) to be a good approximation to E(u) in the positive

neighborhood of u = 0, the aliasing lobes of E(u) must be

15




sufficiently separated so that the fundamental period, interval
(O,Zn/Ax), is only slightly contaminated by the undesired lobes
contributed when m = 11;12,.... (Recall that E(u) is essentially
nonzero only in the neighborhood of u = 0; see equation (20).)
This aliasing requirement can be checked by looking at one period
of E(u), namely, 0 < u < 2n/Ax, to see if the skirts near u = 0+
and u = 2n/Ax- are sufficiently small. If they are not, sampling
increment Ax must be decreased. Then, E(u) can be made a good
approximation to E(u) in an interval of length (O,Zn/Ax) located

about u = 0.

From equations (18) and (21), interest is centered on
E(u) = exp(-ru) E(u) £ exp(-ru) E(u) (23)

for u in the fundamental period of length Zn/AX in the
neighborhood of zero. Accurate results for EDF E(u) are obtained
when E(u) has experienced insignificant aliasing, which is
éccomplished by choosing L small enough. Because E(u) for u > 0
has purposely been stretched out over a wider u interval, by
choice of r, Ax must be made quite small. Making Ax quite small,
however, is an inherent requirement for investigating very low
levels of E(u) because these low levels are not realized until a
considerable interval of u has been covered. 1In other words, the
more stringent requirement on Ax is not due to the particular
procedure, but rather, aue to the desire to investigate a wider

range of positive u values, namely, those including very small

16



E(u). That procedure naturally requires a larger spacing of the
aliasing lobes of E(u) to clear out a wider interval of u space

so that the e?er—present aliasing does not become intolerable.

FFT CONSIDERATIONS FOR EDF

Because E(u) has period 2n/Ax, its evaluation can be limited
to one period. 1In particular, consider
A f(mAx - ir)

© .
~(20 N X .
E(K_ ﬁ) = Re i=o € — imAx exp(-i2nmmn/N) for 0 < n £ N-1.

(24)

Presuming that sampling increment Ax is taken small enough to
effectively eliminate aliasing, a plot of this complete period of
E(u) reveals an interior region where the computer round-off

noise is dominant.

If an integer in this noise region is defined as Ng, then the
values of equation (24) in the range (O,Nf) can be used directly

to get estimates of the desired EDF according to

E(Zﬂ E] - ex (-raa) (ﬂ r_l) = ex [_r_n.rz)
5. N) - €%P 5. N 5. N) - G%P A, N
X X X

|
[
=

(22 3 (25)

for 0 < n (£ Nf. However, the values in the region Nf < n must be
scaled differently because they should represent the negative

region of E(u) just below the origin, that is, u < 0. The

17




correct scaling in this region is

———] for N, < n < N . {(26)

f
These scaled values are typically stored back in bins N, < n < N
and plotted at the upper end of the interval (0,2n/Ax). However,
this upper end of’the plot must be recognized as the estimate of
EDF E(u) just to the left of the origin, that is, u < 0.

Usually, only the values for 0 < n £ N are of interest because

they encompass the small tail probability values of E(u).

The infinite sum on m in equation (24) must be truncated
where the magnitude of complex ratio f(mAx - ir)/(r + imAx)
becomes insignificant. Values of this complex ratio for m 2 N
are simply additively prealiased into bin m MODULO N, thereby
avoiding truncation error. Notice that FFT size N has no effect
on accuracy; it merely controls the spacing 4, = 2n/(NAx) of

output values in equations (24) and (25).
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EXAMPLES

Four different characteristic functions are considered in
this section. For each CF f(&), the corresponding PDF p(u) is
calculated and plotted, along with an error estimate. In the
second half of this section, the corresponding EDFs E(u) are
evaluated, in addition to an error estimate. Deeper tail
probabilities than considered in these examples are possible
through larger choices of the shift parameter r. All the FFT

sizes were taken at N = 1024 in this section.

CHI-SQUARE PDF

The CF of interest is £(£) = (1 - i&) L0

, which corresponds
to a random variable x that is composed of a sum of 20 indepen-
dent, squared Gaussian random variables with zero mean and common

variance %. Because x » 0, additive constant c is taken as zero.

consider, first, the standard FFT approach (1) on this CF,

that is, with shift parameter r = 0. The resultant PDF p(u) is
displayed in figure 1, where sampling increment AX = 2n/80 was
used in equation (7) and sequel. The PDF p(u) decays until it
reaches the inherent round-off noise of the computer, which is
roughly E-15 relative error (64-bit representations). Lower
probability (density) estimates are not possible for this example
with this standard FFT approach. The maximum abscissa (period)

on this plot is Zn/Ax, which is 80 for the above choice of Ax.
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Figure 1. Chi-Square p(u) via Standard FFT Technique

80

Observe that p(u) drops from E-6 to E-16 in a span of values

from u = 32 to u = 61, that is, a span of 29 in u.

To reach

probability (density) level E-76, for example, an additional span

of approximately 6 * 29 = 174 in u is required. - To avoid

aliasing, a new sampling increment satisfying 61 + 174 = Zn/Ax,

namely, Ax = 2n/235, is required.

would have required AX = 2n/235 to get to level E-76 by the

standard technique with r = 0.

20
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Oon the other hand, using shift parameter value r = 0.7, along
with ¢ = 0 and Ax = 2n/240, the periodic function p(u), defined
in equation (7), is presented in figure 2. Naturally, P(u) has a
relative error about E-15; furthermore, this small sampling
increment A, is observed to be necessary to avoid aliasing at the

right tail of B(u).

Wwhen the results for P(u) are used in equation (16), the
resultant estimate for the desired PDF p(u) is as shown in figure
3. The superpoéed dashed line is an error estimate, starting
from E-12 near the top left and going to the noisy region at the
bottom right end. The relative error of the estimated p(u)
varies over the range of u values, gradually deteriorating to
useless values for u > 200. However, approximately six
significant decimal digits are still available at the E-50
probability level. For this example, the exact PDF p(u) is
available and has also been plotted in figure 3; it overlies the

estimated PDF until the probability values drop below E-75.

GAUSSIAN PDF

The normalized Gaussian CF is f(&) = exp(-£2/2 + icg), where
additive constant c is taken as 2. With shift r = 7 and sampling
increment Ax.= 2n/20, the periodic function P(u) is as displayed
in figure 4. The sampling increment could not have been taken
much smaller without incurring aliasing. Also, the constant c

is at its minimum value, just keeping positive values at u = 0+.
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The corresponding estimated PDF p(u) is plotted in figure 5,
along with the estimated error. The estimated error line joins
the two noisy regions at each end of the interval (0,20), which
are easily located in P(u) in figure 4. For this example, there
are approximately seven decimals of accuracy at the E-40
probability level. The exact PDF p(u) overlies the estimated PDF
except at the edgés of the interval (0,20); this type of result

is again anticipated by the plot of figure 4.

BRANCH POINT PDF

The CF for this example has multiple branch points, namely,

£(&) =

1
n=

0 3 '

(1 - ig/m)" 7% . (27)
1
This CF corresponds to the sum of 10 independent, squared zero-

mean Gaussian random variables with different variances, 1/(2n).

The_correspdhding PDF p(u) is not available in closed form.

The relatively slow decay of this CF, namely, as 1900/&5,
forces numerous evaluations of equation (27) to be undertaken.
In fact, with increment Ax = 2n/200, over 160,000 complex samples
were required until |£(§)| became sufficiently small to control
the truncation error. Nevertheless, employment of préaliasing
operation (12) enabled storage and execution of only an N = 1024

point FFT according to equation (13).
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The function P(u) resulting from operation (13) is displayed
in figure 6 for shift r = 0.8. The corresponding estimated PDF
p(u) is given in figure 7, along with the estimated error. The
result for p(u) has approximately six digits of significance at

the E-40 probability level.

ESSENTIAL SINGULARITY PDF

The last characteristic function of interest is

10 1 10 i
£(g) = exp(la g 1——:—1—?’7{] n|=1|(l - 1i&/n) . | (28)
This CF has branch points and essential singularities at & = -in

and corresponds to a sum of 10 independent, squared Gaussian
random variables with a common mean of 1 and different variances

1/(2n).

The exponential in equation (28) causes a more rapid decay
with &; in fact, only 200 samples of the CF were necessary at
sampling increment Ax = 2n/200, using shift r = 0.6, to control
the truncation error. The resultant $(u), plotted in figure 8,
again has relative error in the E-15 range. The corresponding
estimated PDF p(u) and its estimated error are displayed in

figure 9. There are approximately five digits of significance at

the E-40 probability level.
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CHI~-SQUARE EDF

The CF of interest is again £(&) = (1 - iE)_lo. However, for

the following examples, the quantity‘of interest is the EDF E(u).
For sampling increment Ax = 2n/240, shift r = 0.6, and additive
constant ¢ = 0, the periodic function E(u) of equations (21) and
(24) is presented in figure 10. The nonzero values of E(u) just
below u = 240 are the nonzero values of E(u) for u < 0 being
periodically repeated; this exponential decay of E(u), according
to equation (20), shows up as a straight line on the logarithmic
ordinate. The relative error of E(u) in figure 10 in the noisy

region is E-15.

For this example, take the noise-region integer of equation
(25) as Nf = 0.75 N = 768. Then, the estimated EDF E(u),
obtained from equations (25) and (26), is presented in figure 11.
For u less than 150, the estimated and exact EDFs overlap. Also,
for 200 < u < 240, the estimated E(u) recovers its correct value
of 1; recall that this region corresponds to u < 0 in the

original E(u).

The accuracy of estimated EDF E(u) is about five decimals at
the E-40 probability level. The error estimate (dashed line) is
obtained by drawing a straight line between the noisy regions
established in figure 10; the white-noise level in figure 10 is
translated by equations (23) or (25) into a line with slope

-r log(e) = -0.434 r on the logarithmic ordinate of figure 11.
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GAUSSIAN EDF

The CF for this example is f(§) = exp(—£2/2 + ict), where
constant c is taken as 6. For increment Ax = 2n/24 and shift
r = 5, the periodic function E(u) is as displayed in figure 12.
For noise-region integer Ne = 7/8 N = 896, the corresponding‘
estimated‘E(u) is plotted in figure 13. The stability is
approximately six decimals at the E-30 probability level. The
estimated E(u) never recovers its unity value for u just less
than 24 because the periodic function in figure 12 was not

noise-free in that region (in contrast to figures 10 and 11).

BRANCH POINT EDF

The CF f(&) was given in equation (27). The increment &,
must be taken smaller for the EDF than for the PDF beéause of the
"left" tail of E(u) for u < 0; see equation (20). On the other
hand, the number of samples decreased to about 60,000 because'of
the extra 1/§ decay factor in equaﬁions (18) and (21). The
periodic function E(u) is given in figure 14. The left tail of

E(u) shows up in the region 200 < u < 240.

The corresponding estimated EDF E(u) is displayed in figure
15. It has seven significant digits at the E-40 probability
level. The error estimate has slope -0.434 r, which is -0.35 for

this example where r = 0.8 has been used.
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ESSENTIAL SINGULARITY EDF

The CF for this example is given by equation (28). The
exponential decay of f£(&) allows accurate calculation of the
periodic function E(u) with just over 200 samples of the CF. The
left tail in figure 16, just below u = 240, is again the periodic
repetition of the exponential behavior of E(u) for u < 0, as

indicated in equation (20).

The corresponding estimated EDF E(u) is given in figure 17,
along with an error estimate that has a slope of -0.434 * 0.6 =
-0.26 for r = 0.6 in this example. There are approximately four

digits of significance in E(u) at the E-40 probability level.
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SUMMARY

An efficient, fast, and accurate FFT technique for obtaining
small tail probabilities'for both the PDF and the EDF, directly
from the CF, has been derived and demonstrated numerically for
several examples. The method is especially useful when analytic
or asymptotic expressions for the probabilities are unavailable

or unknown.

By choosing the shift parameter r closer to the highest
singularity of CF £(%) in the complex &-plane, smaller values of
the tail probabilities of the PDF and EDF can be realized. The
cost in this épproach is that the sampling increment 4 must then
be taken smaller to avoid aliasing. Although taking a smaller Ax
necessitates more computer time and effort, it does not have to
involve more storage because prealiasing can be advantageously‘
employed to keep the FFT size N at very reasonable values. The
FFT size N has no effect upon the errors caused by aliasing and
truncation; rather, N merely controls the spacing at which the

PDF and EDF outputs are calculated.

A sample BASIC program for calculating the PDF p(u) is listed
in appendix A, and the corresponding program for the EDF E(u) is
given in appendix B. Inputs required of the user are additive
constant ¢, shift .r, sampling increment 4, and the particular CF
f£(%&). sSome trial and error may be necessary in selecting the

best values of r and Ax.
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280
2909
200
319
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580

APPENDIX A — BASIC PROGRAM FOR PDF

SMALL TARIL PROBAEBILITIES
R=.7

Dx=2.#F1-/248.

C=0.

H=1824

¥Y1=-98.

Y2=o8.

Toel=1.E-3¢

Hi=HN-1

REDIM Cos¢8:Ns 40, XO@:H1),Y(B:H1D

DIM Coz(4896),%(16384),¥Y(16384>
DOUELE H,HM1,K,M,Hs o
A=2.#%#PI/N
FOR K=8 TO Ns4 ‘
Cos (K>=COS(A%K)D !
NEXT K
A1=18. !
R1=1.-R
Fe=1./R1~A1
R(BI>=.5
Y(@>=9g.
M=0
M=M+1
R=Dx*M .
CALL Power(Ri,-¥,-A1,Ar,Ri>
Fr=Ar/FB |
Fi=Ai- FB !
K=M MODULO M !
RKIKI=RKI+Fr
Y (KI=YC(K)+Fi )
IF (FrxFr+Fi*Fi>Tol1> THEH 220
CALL Fftl14CH,Cos(®),R(£),¥Y(*))
MAT K=X*(Dx/PI>
Big=MAXK(HX (%))
GINIT
PLOTTER IS
GRAPHICS OH
WINDOW B,N,-18,0
LINE TYPE 3
GRID Ns8,2
LINE TYPE 1
FOR N==8 TO N1
Pn=X(Ns> !
IF Pn<>8. THEHM 478
PENUP
GOTO 488
PLOT Nz,LGTC(AES(FrI-Eig> [
NEXT HNs=s
PENUP
PAUSE

"GRAPHICS"

"CHI-SRURRE-FDF®
AMOUNT OF COHTOUR SHIFT USED
SAMPLIMG IMCREMEMT IH &
ADDITIVYE COMSTAMT
SIZE OF FFT
LOMER LIMIT OF LGT RAHGE
UPPER LIMIT OF LGT RAHGE
TOLERAMCE COH MAG S& CHAR FH

IMTEGERS, HOT DOUEBLE PRECISIOHN

QUARTER-COSIHE THELE IH Coz(*)

CF fd(xi) = 1741 - i =id*alpha

REAL CF
IMAG CF
PREALIASING

FOF TILIH

HORMALIZED PDF TILDA




51
528
530
S48
550
560
570
558
590
660
610
620
630
€48
E5@
66D
670
€80
690
700
710
720
730
740
758
760
770
760
790
800
810
820
830
840
856
860

-, 870
888
898
960
910
920
930
940
950
960
978
980
990

1666
1610
1026
1030
1048
1378
1320

Du=2.#FI-/(H*Dx> I U INCREMEHT
FOR Ms=8 TO HNi
U=Du#%HNs
KM )=FO+EXFP(-R*U>%x(H) ! PDF ESTIMATE
NEXT HMs
GCLEAR
WIHDOW 8,H,¥1,Y2
LINE TYFE 3
GRID Ns8, 10
R1=A1-1.
Ga=FNGammaCAl >
FOR Ns=1 TO N STEP 18
U=Du%*HNs
Fe=FHNEx(U-R1*LOG(U>) Ga ! PIDF EXACT
PLOT HMs,LGT(Pe>
HEXT H=
PENUP
FPRUSE
LINE TYPE 1
FOR Hz=0 T0 H1
Pn=X{(Nz> ! FDF ESTIMATE
IF Pn<>8. THEN 750
FENUP
GOTO 7¢e@
PLOT Ns,LGT(ABSC(FN>>
NEXT HNs
LINE TYPE 3
MOVE 6,LGTC(ABS(X(@>))> ! ERROR
DRAW N1,LGTCABSCXC(NLI D I ESTIMATE
PENUF
PRUSE
END
|
DEF FNEx(¥> I EXP(=-¥>
IF X>708. THEN RETURN ©. :
RETURN EXP(-X>
FNEND
|
SUB PowerdiX,Y,Real,U,¥> ! PRIHMCIFAL FOMWER Z-Real
T=R#K+VxY
IF T>8. THEHWH 958

- U=v=8,

IF Real=8. THEHW U=1.

SUBEXIT

F=EXP(.5%¥Real *L0OGCT)>

IF X=6. THEN R=.5%PIxSGH(Y)

IF X<>B. THEN A=ATHNH(Y~/X>

IF X<B. THEM A=R+PI%(1.-2.%(¥<@.>)
T=Real *A

U=F*C05¢(T>

V=F#SINC(T?

SUBEND

1

DEF FNGammal®x) ! HART, page 1325, #5243
|

SUE Fft14(D0OUELE M,REAL Cos(#), M0,V (x2d | Hi=Z+~14=16384; 0

3

SURS




APPENDIX B — BASIC PROGRAM FOR EDF

! SMALL TAIL FROBABILITIES "CHI-S@UARE~-ELDF"

Ix=2,*F1-248. ' SAMPLIMNG INCREMENT IH X
R=.6 ' AMOUNT OF CONTOUR SHIFT USED
H=1824 I SIZE OF FFT
Yi=-78. I LOMWER LIMIT OF LGT RAHGE
Y2=14a,. I UPPER LIMIT OF LGT RAHGE
Tol=1,E-38 ! TOLERAMWCE OM MAG S& CHAR FH
Hi=N-1 '
REDIM Cos(B:N-43,KX(B:N1),¥Y(B:H1)
DIM Co=(4896),X(16384),Y(1€384)
DOUELE HN,M1,K,M,Hs,Hf ! IHTEGERS, MQT DOUELE FRECISION
R=2.*PI/N
FOR K=8 TO N-4
Cos(K>=COS(A%K) ! QUARTER-COSIHE TARAELE IH Coszixd
NEXT K

MAT X=<(@.>

MAT ¥=(@.)>

A1=18. ' CF flxid» = 1s¢1 - i wir»~alpha

Ri=1.-R

R2=R*R

X(BI>=.5/C(R1~A1 ¥R

M=0

M=M+1

R=Dx#¥M

CALL Powerd(R1,-X,-A1,Ar,Ri>

A=R2+X#¥

Fr={(Rr*R+Ai%X) A !  RERL CF

Fi=(Ri*R-Ar+*X>/A I IMAG CF

K=M MODULO H ! PREALIASING

RCKI=RCKD +Fp
YCKY=Y KD +F i
IF (Fr*Fr+Fi*Fi>>Tol THEN 230
PALL FFt14CN,Cos(*),XC%), Y (%))
MAT X=X%(Dx/PI>
Big=MAX (X (%))
GINIT
PLOTTER IS "GRAPHICS"
GRAPHICS ON
 WINDOW 8,N,-18,@
LINE TYPE 3
GRID N-/8,2
LINE TYPE 1
FOR Ns=B TO N1
En=X(Ns) t EDF TILDA
IF En<>8. THEM 430
PENUP
GOTO 496
PLOT Ms,LGTCRES<Ern>~Figd ! HORMALIZED EDF TILDA
NEXT Ns
PENUP




5106
529
530
546
558
560
578
550
590
600
€10
620
630
640
€50
€60
6708
€30
696
760
716
728
730
740
750
760
770
780
790
00
g10
£20

-£830

“840
850
860
870
850
g98
$90
%10
$26
930
949
950
2960

1100
1119
1440
1454

INFUT "INWPUT FRACTICOH OF PERIOD",Frac

Mf=N*#Frac

Du=2.#PI/(H#Dx) ! U INCREHMEHT
FOR He=@8 TO Hf

U=Du*Ns

ACHz )I=EXP(-R£U>*¥ (M=) I EDF Edu>d
NEXT Hs

Rp=R#2.%P1./Dx
FOR Ns=MHf+1 TO NI

U=

Du=HNs

RIH=)=EXP(-R*#¥U+Rp)#4A{H=) I EDF E<u>
NEXT Ne ;

GCLERR

WINDOW B8,H,Y1,Y2

LINE TYPE 3

GRID NrE, 18

Al1=A1-1.

Ga=FNGammacAl)>

FOR Ns=8 TO N STEP 1@

U=

S=

Ju*Ns
T=1.

FOR K=1 TO Al
T=T*UsK

S=

S+T

NEXT K .

Ee=EXP(-U)>*S i  EDF EXACT
IF Ee>8. THEN 508

PENUP

GOTO 818

PLOT Ns,LGT(Ee)

NEXT Ms

PENUP

LINE TYPE 1

FOR Ns=8& TO Hi

En=®(MHs) ! ESTIMATED EDF
IF En<>®. THEMN £90

PENUP

GOTO 9@@

PLOT Ms,LGTCRBSC(En))

NEXT Hs

FPENUP

PRUSE

GRAPHICS OFF

END
éUB
DeF
éUE

FPower(¥,Y,Real,U,¥> | FRIMCIFAL FOWER Z~Real
FHGamma(X) ! HRRT, page 135, #5243

Fft14C(D0OUELE H,REAL Cosd#),K(#d,¥Y (%) | H{=2+14=18384;
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